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1 Introduction

Scientists can now monitor on a genomic scale the patterns of gene expression under varying envi-
ronmental conditions. With this rapidly growing wealth of information comes the need for organizing
and analyzing the data. One natural approach is to group together genes with similar patterns of ex-
pression. Several approaches have suggested various alternatives for similarity metrics and clustering
algorithms [1, 2, 4, 7, 8]. However, the studies reported on the use of a particular choice of metric
and clustering algorithm, with little comparison to other techniques. In this paper, we systematically
investigate the relative merits of several well-known metrics and clustering algorithms as applied to
gene expression data. Our intent is to provide biologists with a useful guide for choosing a technique
to analyze gene relationships in their data, by alerting them to the strengths and limitations inherent
in that choice.

2 Method and Results

The gene expression dataset used in this study is a subset of the publicly available collection of yeast
expression data (http://www.cmgm.stanford.edu/pbrown/). The data are in the form of log-ratios of
mRNA expression levels between an experimental and control sample of cells. Combining data from
mitotic cell division, diauxic shift, and sporulation, we obtained transcript levels over 92 experimental
conditions. We chose 1853 genes showing significant variation at the 1% level under a χ2-based index.
Of these genes, 45% have a MIPS functional classification (http://www.mips.biochem.mpg.de/). Four
percent of the values in the dataset of 1853 genes and 92 experiments were missing; 1110 genes had at
least one missing value. To investigate the effect of missing values, we created an additional dataset
where the missing values for a particular gene were imputed using the average of the 30 nearest
neighbors.

We compared several clustering techniques, including a bayesian mixture of models algorithm
(AutoClass-C v3.2 [3]), K-means, and agglomerative hierarchical clustering. For the hierarchical
method, we used a euclidean metric, correlation based metrics, and a mutual information based metric
[8]. To apply the mutual information based metric, we discretized the data, using AutoClass-C to
suggest the number of bins and bin boundaries. For linkage algorithms, we considered both complete
linkage (furthest neighbor) and the variant of average linkage algorithm as used in [4] when the use of
such an average is appropriate given the metric. To compensate for missing values, euclidean distance
between two genes is weighted by

√
92/N where N is the number of non-missing values common to

the two genes. To estimate the number of clusters to use in K-means, we consider a mean square error
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ratio [5], a log-odds probability ratio, and a Monte Carlo Cross Validation technique [6] for a range
of values of K. We found that the three estimators tend to agree on the optimal value of K.

Using a correlation metric and an average-link variant of hierarchical clustering, [4] found that for
this clustering combination, large groups of genes with similar expression patters clustered together,
and that genes of similar function tend to cluster together. Using the non-hierarchical methods, we
were able to compare the consistency of the clusterings across many different methods. We compared
four clusterings found with Autoclass, using four different model term types, and two different K-
means clusterings. Intersecting these six classifications, we observed that large groups of genes are
preserved across clustering methods and that these groups tend to have a consistent functional clas-
sification. The same clusters were also visible in many of the hierarchical clusters, which leads us to
believe that there are easily identifiable classes that will be found regardless of the choice of metric
or clustering algorithm. In particular, both AutoClass and K-means can easily identify clusters with
high linear correlation. The choice of metrics used in hierarchical clustering attempted to capture
other correlations as well.

For the hierarchical clusterings, we found that the choice of the average-link variant used in [4]
with the euclidean or the correlation based metrics tends to produce long chains of clusters. This
makes it difficult to extract meaningful classes from the dendrogram because cuts must be made deep
in the tree to get non-singleton classes. This greatly complicates the cross-method comparisons and
any measures that are calculated on a per-cluster basis. To capture negative linear correlation, we also
used a metric based on the absolute value of correlation. Such a metric might be used to identify genes
which share a common transcription factor binding site with opposing effect on the activation of the
genes. As expected, we found that in addition to the easily identifiable positively correlated groups,
the clusters of the dendrogram tend to include highly negatively correlated genes as well. Use of the
mutual information based metric was an attempt to capture other kinds of relationships of genes,
beyond the linear correlations. We found several groups which clearly show the linearly correlated
genes, but in addition include genes whose expression pattern is not so obviously related. We are
investigating the biological significance of the inclusion of these genes.
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