
76 No. 40 Matsumoto et al.

Can General-Purpose Compression Schemes Really

Compress DNA Sequences?

Toshiko Matsumoto Kunihiko Sadakane
toshikom@is.s.u-tokyo.ac.jp sada@is.s.u-tokyo.ac.jp

Hiroshi Imai Takumi Okazaki
imai@is.s.u-tokyo.ac.jp takumi@is.s.u-tokyo.ac.jp

Department of Information Science, University of Tokyo, Tokyo 113-0033, Japan

Keywords: DNA sequence, compression

1 Introduction
Today, more and more DNA sequences are becoming available. The information about DNA sequences
are stored in molecular biology databases. The size and importance of these databases will be bigger
and bigger in the future, therefore this information must be stored or communicated efficiently. Be-
cause the DNA sequences consist of four bases, two bits are enough to store each base, but they are
hard to compress further. There have been developed several special-purpose compression algorithms
for DNA sequences [2]. These DNA-oriented compression algorithms use characteristic structures of
DNA such as palindromes, approximate matches, and can compress them less than two bits per base.

Nevertheless, the question of the title remains. The reasons are twofold. For practical applications,
general-purpose compressions schemes are used in ordinary communications. From the viewpoint of
compression theory, it is a big challenge whether newly devised general schemes can really compress
DNA sequences. This note answers affirmatively to the question. An implementation (CTW for
short) [5] of the general context tree weighting method surely reduces the size of DNA sequences.
Some interesting aspects of other standard compression schemes are also revealed.

2 Algorithms and Compression Ratios
Compression results are shown in Table 1. The unit of compression ratio is bit per base. The DNA
sequences are standard benchmark data used in [2]. gzip -9 corresponds to the widely used gzip with
option -9. lz adopts the LZ77 scheme, as gzip, with the sliding dictionary of size 32KB to 1MB [4].
arith [5] implements the arithmetic coding, which is the CTW program with order 0 [5]. arith+ [3]
enhances the arithmetic coding with an LZ77-like function encoding a repeat by the length and the
distance to it by the dictionary of size 32KB and 1MB. normal PPMD+ gives the results for the
statistical compression program PPMD+ [6], and adapted PPMD+ for modified PPMD+ program
whose value of the maximum order is adapted. The values in parenthesis are the best maximum of
order for each sequence. PPMD+ escape is an improved PPMD+ program that does not use “escape”
after four alphabets all appear in the context. The values of normal CTW are results of CTW program
with alphabet size 256. CTW-4 is an improved CTW program whose size of alphabet is changed to 4.

As for widely used compress, gzip, and bzip2 with default options, in all cases compress or gzip
only expand in size. The average compression ratio is 2.185 for compress and 2.271 for gzip. With
the option -9, gzip can really compress “humghcsa”, a typical example having so many repeats.
When bzip2 is used, the compression ratio of “humghcsa” is 1.729 per base, but the ratios for the
other sequences are all more than 2 bits per base with average value 2.138. LZ can compress only
“humghcsa” as in gzip -9, bzip2. It does not take account of long distances of repeat in DNA, hence
if the size of the buffer becomes big the compression ratio becomes worse in many cases.



No. 40 Matsumoto et al. 77

Table 1: The compression ratio of each algorithm
DNA sequence Sequence gzip lz lz arith arith+ arith+ normal adapted PPMD+ normal CTW
name length -9 (32K) (1M) (32K) (1M) PPMD+ PPMD+ escape CTW -4

CHMPXX 121024 2.220 2.234 2.276 1.867 1.866 1.866 1.977 1.840(1) 1.839(3) 1.879 1.838

CHNTXX 155844 2.291 2.300 2.352 1.957 1.957 1.956 2.062 1.934(1) 1.935(3) 1.974 1.933

HEHCMVCG 229354 2.279 2.286 2.344 1.985 1.985 1.985 2.053 1.965(3) 1.959(3) 1.997 1.958

HUMDYSTROP 38770 2.377 2.427 2.432 1.949 1.948 1.948 2.237 1.921(1) 1.931(3) 1.960 1.920

HUMGHCSA 66495 1.551 1.580 1.513 2.001 1.488 1.438 2.077 1.694(11) 1.514(11) 1.376 1.363

HUMHBB 73308 2.228 2.255 2.286 1.969 1.913 1.911 2.116 1.921(2) 1.923(3) 1.917 1.892

HUMHDABCD 58864 2.209 2.241 2.264 1.999 1.951 1.950 2.130 1.948(2) 1.938(3) 1.909 1.897

HUMHPRTB 56737 2.232 2.269 2.287 1.972 1.943 1.942 2.130 1.932(2) 1.926(3) 1.922 1.913

MPOMTCG 186609 2.280 2.289 2.326 1.984 1.972 1.961 2.075 1.966(2) 1.964(3) 1.989 1.962

PANMTPACGA 100314 2.232 2.249 2.285 1.880 1.873 1.873 2.018 1.872(1) 1.869(3) 1.902 1.866

SCCHRIII 315339 2.265 2.268 2.308 1.962 1.955 1.935 2.023 1.950(2) 1.948(3) 1.976 1.945

VACCG 191737 2.190 2.194 2.245 1.919 1.862 1.862 2.002 1.910(2) 1.908(3) 1.897 1.857

arith can compress the sequences in which the ratios of ‘a’, ‘t’, ‘g’, and ‘c’ differ, but it expands a
little the sequence in which the ratios are nearly equal (the arithmetic coding cannot utilize the repeat
structure). In all cases, arith+ can compress less than 2 bits per base, because arith+ considers not
only the length of repeat but also the distance of repeat, and then determines whether there is a profit
in using it. Hence, the compression ratio of arith+ can be improved by enlarging the buffer size.

Although in most cases normal PPMD+ only expand in size, adapted PPMD+ can really compress
all of the sequences. In many cases the compression ratio of PPMD+ escape are a little better than
that of adapted PPMD+. We examined the effect of the value of the maximum of order. It is known
that, in English texts, the optimal value of the maximum of order is 5. But, for DNA, adapted
PPMD+ and PPMD+ escape mostly achieve the best compression ratio when the maximum of order
is less or equal 3. In some papers PPMD+ fails to compression of DNA sequence [1], but we thus
found that adapting the maximum of order in PPMD+ is important. It is interesting to see the best
maximum of order for PPMD+ escape is three, which may correspond to protein encoding.

In many sequences, CTW can achieve better compression ratio than PPMD+, and if we change
the size of alphabet to 4 the compression ratio becomes better. The order is set to 32, and the effect of
the value of γ is examined; the result is that in most cases about 0.005 is optimal. In Table 1, the best
values are given. It is remarkable that the order of CTW can be made larger than the corresponding
value 3 in PPMD+ escape, which demonstrates the robustness and power of the context tree weighting
method. CTW [5] is still slow and uses large memory, which should be improved further.

References

[1] Balkenhol, B., Kurts, S., and Shtarkov, Y. M., Modifications of the burrows and wheeler data
compression algorithm, Proc. of IEEE Data Compression Conference, 188–197, 1999.

[2] Chen, X., Kwong, S., and Li, M., A compression algorithm for DNA sequences and its applications
in genome comparison, Genome Informatics, 10:51–61, 1999.

[3] Matsumoto, T., DNA sequences compression algorithm using context tree weighting method,
Senior Thesis, Department of Information Science, University of Tokyo, 2000, to appear.

[4] Sadakane, K., and Imai, H., Improving the speed of LZ77 compression by hashing and suffix
sorting, submitted.

[5] Sadakane, K., Okazaki, T., and Imai, H., Implementing the context tree weighting method for
text compression, Proc. of IEEE Data Compression Conference, 2000, to appear.

[6] Teahan, W. J. and Cleary, J. G., The entropy of English using PPM-based models, Proc. of IEEE
Data Compression Conference, 53–62, 1996.


