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1 Introduction

In the current efforts to generate and interpret the complete genome sequences of humans and model
organisms, large scale searches for near exact sequence matches are frequently performed. Examples
include programs that assemble DNA from shotgun sequencing projects which initially search for
overlapping fragments, large scale searches of EST databases against genomic databases to determine
the location of genes, and cross species genomic comparisons between very closely related genomes.
We have developed an algorithm, called SST (Sequence Search Tree), that searches a database of DNA
sequences for near exact matches, in time proportional to the logarithm of the database size n.

2 The SST algorithm

In SST, we partition each sequence into fragments of fixed length W called “windows” using multiple
offsets. Windows begin at position j * A, and end at position j* A+ W, with j =0,1,2.... Typical
values of the parameters are 0 < W < 1000 and 5 < A < W/2. Then each window is mapped
into a vector of dimension 4F that represents the frequency of occurrence of its component k-tuples.
Specifically, the I’th entry in the vector is the number of occurrences of tuple I in that window. Here

we associate the integer
k

I(a1a2-~~ak) = 4ZM(al),
=1
with the k-tuple of nucleotides ajas - - - ag, a; € {A,C,G, T} where M(a;) =0,1,2,3 for a; = A,
a; = C, ay = G, a; = T, respectively. Typically 4 < k < 6.

The mapping has transformed the problem of finding near exact matches to query windows in the
database to that of finding nearest neighbors in vector space. This search can be done very efficiently
by constructing a tree-structured index of vectors. We construct the index using tree structured
vector quantization (TSVQ), by recursively searching the data for clusters that provide binary (or
higher-order) partitions using k-means clustering [2].

We identify the nearest-neighbors of a query sequence by partitioning the query into non-overlapping
windows and searching the tree-structured index for nearest neighbor windows in the database. Only
windows which are at L; distance less than a threshold T" are returned. However, SST is not guaran-
teed to return all nearest neighbors at distance < T', as we shall see in our computations. Our work
is most closely related to [1, 3, 4].
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3 Computational Results

We illustrate the performance of SST by applying it to detecting overlapping fragments in shotgun
sequence assembly. We fragment a 1.5 megabase sequence of genomic DNA several times using a
Poisson process with A = 300 nucleotides. From the pool of fragments we generate a set of 61350
sequences thus simulating a 12-fold coverage of the genomic stretch. We then randomly introduce
errors into each fragment at a rate of 5%. Insertions, deletions and substitutions where equally likely.

We apply SST to search the database of fragments against itself for overlapping sequences, with
overlap size > 50. In our computations the window size W and the tolerance T' where varied in the
range 30 < W <50 and 0 < T < 30.

Figure 1 indicates the true positive rate (TPR) and the log;, of the false positive rate (FPR) as a
function of W and T. The TPR increases as W decreases and as T increases, and so does the FPR.
With optimal parameters W = 30, T' = 15, the TPR and FPR are .95 and 0.0007, respectively.
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Figure 1: The TPR as a function of the window size W and the the distance threshold T" on the left.
The log base 10 of the FPR as a function of the window size W and the distance threshold 7" on the
right. Data has an error rate of 5 %.

We also compare the speed of SST to BLAST in order to highlight the computational complexity
of SST. In this computation we vary the coverage of the genomic stretch. The following Table shows
the linear scaling of the time per query with BLAST versus the nearly constant time with SST.

Coverage | BLAST search time | BLAST time per query | SST time per query

6% 02:03:09 0.2409 0.0164

12x 07 : 27 : 47 0.4379 0.0186

24 % 28 :10:25 0.8266 0.0173
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