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1 Introduction

We describe a hidden Markov model, HMMSTR, for general protein sequence based on the I-sites
library of sequence-structure motifs [1]. Unlike the linear HMMs used to model individual protein
families, HMMSTR has a highly branched topology and captures recurrent local features of protein
sequences and structures that transcend protein family boundaries. The model extends the I-sites
library by describing the adjacencies of different sequence-structure motifs as observed in the database,
and achieves a great reduction in parameters by representing overlapping motifs in a much more
compact form. The HMM attributes a considerably higher probability to coding sequence than does
an equivalent dipeptide model, predicts secondary structure with an accuracy of 74.6% and backbone
torsion angles better than any previously reported method, and predicts the structural context of beta
strands and turns with an accuracy that should be useful for tertiary structure prediction.

2 Methods and Results

Formulation of the hidden Markov model

A hidden Markov model is a network of Markov states connected by directed transitions. Each state
emits symbols representing sequence and structure.

The non-redundant subset of all proteins of known structure has been encoded as a linear sequence
of discrete amino acid and structural symbols, augmented by an amino acid frequency profile obtained
by multiple alignments. The amino acid of the parent sequence is denoted by Ot, and the profile
by {Om

t } (1 ≤ m ≤ 20). For the structural identifiers the following nomenclature is used: 3-state
secondary structure Dt = {H,E, or L}, discrete backbone angle region Rt = {one of 11 regions}
and the context symbol Ct = {one of 10 symbols}. A sequence S = s1, s2, . . . , sT is given by st =
{Ot, {Om

t },Dt, Rt, Ct} (1 ≤ t ≤ T ).
The utility of the HMM to model database sequences and structures is based on the notion of

a path, which is a sequence of states through the HMM, denoted Q = q1q2 · · · qT . Thus, the joint
probability of a symbol sequence S and a state sequence Q given the HMM λ is obtained by:

P (S,Q | λ) = πq1Bq1(s1)aq1q2Bq1(s2) · · · aqT−1qT
B(sT ) (1)

where Bq(s) is the probability of observing symbols s at state q, and aij is the probability of a
transition from state i to state j, and πi is the probability of starting in state i.
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This probability summed over all possible paths gives us a measure of the relative likelihood
that the sequence represents a coding region. The path or paths of maximum probability give us
a sequence of Markov states whose structural symbols D and R represent the predicted secondary
or local structure. Similarly, the context symbols C associated with each Markov state tell us, in
combination with the secondary structure prediction, whether certain tertiary contacts are predicted
to be made.

Initialization based on the I-sites motif library and training on known structures

An I-sites motifs, 262 in number ranging in length from 3 to 15 residues, may be represented as strings
of Markov states, or Markov chains, initialized and numbered sequentially. To combine them into a
single model, the Markov states were merged using a measure of similarity that incorporates sequence
and structure over a variable stretch of the chain. The order of merging was based on state-sequence
similarity and a few contraints on the topology. The resulting HMM is a sparce, directed graph with
many branches and cycles. A single non-emitting state was inserted between all sink states and all
source states.

Expectation maximization was performed with a generalization of the algorithm described in Ra-
biner [2]. The training set consisted of a non-redundant set of 794 proteins of known structure. An
independent test set of 73 proteins was set aside and used only in the final evaluations.

Prediction of coding regions,local and secondary structure, and structural context.

The per-position information content of a protein sequence using HMMSTR, relative to a simple dipep-
tide frequency Markov model (almost equivalent to a fifth-order MM on nucleotides), was averaged
over all of the proteins in the test set, using only a single parent sequence for each. A net increase
in information content of 0.0188 nats/position was provided by the HMM. The dipeptide model in
turn provided 0.0072 nats/position of information over the single-position “background” model. (Al-
though the incorporation of profile data in the equation adds ten-fold to the information content, that
additional information is not relavent to the gene finding problem since the presence of homologous
sequences is itself a much stronger signal for coding regions.)

Three-state secondary structure predictions were made by calculating the single-position marginal
probability of each secondary structure state over all possible Markov state paths. The results on the
test set were 74.6% correct; comparable to the best methods available. Backbone angle prediction
were made in a similar way, computing the marginals for each of 11 regions of Ramachandran angle
space. Using the MDA measure [1], HMMSTR correctly predicted 59% of all eight-residue segments,
compared to 48% for the I-sites library and 43% for the best secondary structure predictors. Context
symbols were predicted for turn residues if they fell between two strands. Predictions indicated that
the model can discriminate between hairpin and diverging beta-turns, and to some extent can predict
whether a beta-strand is in the middle of a sheet or at the end.

The structure of the HMM for predicting protein local structure is suggestive of a model for
grammatical structure in written language, with recurrent short patterns arranged into words, and
words into phrases. By further incorporation of rules for tertiary structure formation, this method
may eventually link the phrases into full sentences, addressing the ab initio folding problem.
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