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Introduction

Computer-assisted sequence comparison has become an integral part of modern molecular biology.
Two types of algorithms have been used: those which search for the optimal alignment (as exemplified
by the Smith-Waterman algorithm [1]), and those which identify likely alignments (as exemplified
by the HMM-based “Sequence Alignment Modules” [2]). In each case, the quality of alignment is
summarized by an alignment score S; the latter is typically taken to be the logarithm of the total
likelihood in the probabilistic approaches. An important goal common to the study of all algorithms
is to understand the score distribution P (S) for the appropriate null models. This distribution gives
the probability that a high scores could have arisen by chance and is therefore more meaningful to
homology detection than the alignment scores themselves.

Rigorous results on such background statistics are known only for the gapless alignment [3], whose
score distribution follows the so-called Gumbel form, P (S) = KMNλe−λS−KMN exp(−λS) , for long
sequence lengths M and N . There exist explicit formulae relating the hundreds of alignment param-
eters to the two Gumbel parameters λ and K. For the gapped Smith-Waterman alignment, ample
empirical evidences suggest that the null score distribution still obeys the Gumbel form. But the de-
pendences of the two Gumbel parameters on the alignment score functions are very complicated and
largely unknown. For probabilistic alignments, the log-likelihood score does not even satisfy Gumbel
distribution as was recently shown [4].

Combining the optimal and the probabilistic approaches to sequence alignment, we developed a
new “hybrid” algorithm for which the alignment score is still Gumbel-distributed, and the Gumbel
parameters can be computed accurately and rapidly, for a large class of scoring functions (including
the position-specific ones), and for a wide range of sequence lengths (down to ∼ 100 amino acids),
without the need of extensive simulation as is commonly done. We have independently checked using
sequences generated by simple evolution models that the fidelity of homology detected by the hybrid
algorithm is comparable to or better than that of the Smith-Waterman algorithm [4].

Algorithm and Results

For clarity, we describe here only the simplest algorithm with linear gap cost. All the numerical
results are however obtained for the more commonly used affine gap function which is described in
detail in Ref. [4]. Given two sequences �a = {a1, a2, · · · , aM} and �b = {b1, b2, · · · , bN} to be aligned,
we first compute the likelihood Zm,n of aligning the subsequences âm′,m = {am′+1, am′+2, · · · , am} and
b̂n′,n = {bn′+1, bn′+2, · · · , bn} for all possible “starting point” 1 ≤ m′ < m and 1 ≤ n′ < n. Zm,n can
be efficiently computed using dynamical programming:

Zm,n = w(am, bn) · Zm−1,n−1 + ν · [Zm−1,n + Zm,n−1] + 1, (1)

for 1 < m < M and 1 < n < N , with w(ai, bj) being the prescribed probability of pairing (ai, bj),
ν the prescribed probability of indels, and the “boundary condition” Z0,n≥0 = Zm≥0,0 = 1. Note that
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without the +1 term on the right hand side of Eq. (1), Zm,n is just the total likelihood of the global
alignment of the subsequences â1,m and b̂1,n, provided the probability conservation condition

∑
a,b

w(a, b)p(a)p(b) + 2ν = 1, (2)

where p(a) is the background frequency of the amino acid a. The condition (2) is easily satisfied,
for example, by choosing w(a, b) = (1−2ν) · es(a,b), for the class of (rescaled) PAM substitution scores
s(a, b). The additional term of +1 in Eq. (1) turns the algorithm into probabilistic local alignment [4].
In the fully probabilistic approach (as in SAM [2]), the alignment score is taken to be the log of the
total likelihood, e.g., ln

[∑
m,n Zm,n

]
. We instead take

S ≡ max
m,n

{ lnZm,n } (3)

as the alignment score. Eqs. (1) and (3) define the semi-probabilistic or hybrid alignment algorithm
we used in this study. This is an O(M ·N ) algorithm as in Smith-Waterman or probabilistic alignments.
It however offers a tremendous advantage in that the probability distribution P (S) can be computed
without large scale numerical simulation, for a large class of scoring functions (including position-
specific ones) as long as they obey the probability conservation condition such as (2). Our theory
predicts that P (S) is Gumbel distributed, with the important Gumbel parameter λ being exactly 1
for long sequences. A simple recipe for correction to λ due to finite sequence lengths is also given
and can be efficiently computed using a dozen or so alignments of appropriately chosen correlated
sequences. In the following figures, we illustrate results obtained from the hybrid algorithm, using
the PAM-120 substitution matrix, and an affine gap function. Figure (a) shows the distribution
P (S) obtained from 50, 000 pairwise alignment of random sequences of lengths 300. It agrees very
well with the expected Gumbel distribution (smooth line). Figure (b) shows the dependence of the
parameter λ on the sequence length N . The circles are data from direct simulation and the line is the
theoretical prediction, which agrees with the data to within one to a few percents. With our approach,
such accurate values of Gumbel parameters can be obtained within a few seconds, while comparable
statistics obtained from direct simulations would take many hours of CPU time.
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