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1 Introduction

Physical maps are a partial ordering of distinguishable chromosomal features. A rapid and relatively
inexpensive method for creating them involves fingerprinting clones from a chromosomal library for the
presence of probe sequences using hybridization. Hybridization experiments are typically carried out
in parallel by fixing DNA’s from multiple clones to a filter and incubating that filter with radioactively
or fluorescently labeled probe DNA. Clones hybridizing to the probe are identified by spots on the
filter where a significant amount of probe DNA remains after the filter is washed.

Originally, the analysis of probed filters was done manually. In modern high-throughput environ-
ments it is desirable that capture of hybridization data be automated. To do this, the amount of
probe sequence (i.e. radioactivity or fluorescence) detected on different locations of a filter is digitally
encoded and software determines which clones hybridize to the probe. Locations on the membrane
with levels of radioactivity or fluorescence greater than a threshold value are scored as positive with
regard to hybridization. Locations with levels less than the threshold are scored as negative.

In this study we examine several methods for creating physical maps with the automatic capture
of data. In one method hybridization data is scored by software using a threshold. Physical maps are
then generated using two algorithms, the Hamming distance traveling salesman algorithm (HDTSP)
[3] and the maximum likelihood algorithm of Alizadeh et al. (ML) [1]. A novel approach for creating
physical maps using unscored hybridization data is also evaluated. In this approach raw levels of
hybridization are used by a novel physical mapping algorithm that will be described. This algorithm
can be used for creating physical contig maps when probes are unique and clones and probes are of a
uniform size.

2 Method and Results

An algorithm for ordering unique probes using unscored hybridization data is first presented. This
algorithm can use hybridization data consiting of real numbers. It is assumed that larger numbers
denote stronger hybridization. If data is noise-free, then hybridization values corresponding to over-
lapping clones and probes should be large and values corresponding to non-overlapping clones and
probes should be small. Let m denote the number of clones and n denote the number of probes. Let A
be a m×n matrix where ai,j gives the hybridization value for the ith clone and the jth probe. If clones
and probes are of uniform size and each probe samples a unique chromosomal interval, then each
clone will overlap with at most two probes. If data is noise-free and the columns of A are permuted
so that they correspond to the correct order of probes, then in each row the two largest values will
be in adjacent positions. If this matrix is converted to binary by scoring with a perfect threshold, the
resulting binary matrix will have the consecutive ones property [2].
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An objective function based on the noise free matrix described above follows:

m∑

i=1

max
j

{ai,j + ai,j+1} (1)

If data is noise free and the columns of A are permuted so they correspond to the correct probe
order, then this function will be maximum. In this study the microcannonical annealing algorithm was
used to search for a permutation of columns maximizing the function. We will denote the resulting
algorithm MCA-1.

The approaches using scored data mentioned in the introduction and this novel approach using
unscored data were evaluated by simulation with data sampled from the Aspergillus nidulans physical
mapping project. These data consist of grayscale raster image files created from radioactively probed
filters. Average grayscale values were determined for each clone in the negative of these images. The
values for each filter were then corrected for variation between images by normalizing the values to the
range (0,1), where 0 was equal to the value of the clone with the smallest greyscale level on the image,
and 1 was equal to the greatest. 2 megabase chromosomes with different coverages of 40 kilobase
clones were generated in silico by a Poison process. A maximum set of non-overlapping probes was
selected from among the clones and designated probes. Hybridization values for clones and probes
that overlap in silico were selected from hybridization values of A. nidulans clones and probes known
to overlap. Similarly, hybridization values were generated for non-overlapping simulated clones and
probes. For the HDTSP and ML algorithms, hybridization data were scored using several different
thresholds.

Probes were ordered using the HDTSP, ML, and the MCA-1 algorithms. Results were evaluated by
determining the percentage of adjacencies common to both the true order of probes and the computed
ordering (adjacency quality). Each entry in the following table shows the mean of 100 independent
data sets.

Adjacency Quality (%)
coverage = 5 coverage = 15

algorithm threshold threshold
0.01 0.05 0.15 0.25 0.01 0.05 0.15 0.25

HDTPS 32 58 75 67 36 88 84 72
ML 17 55 75 66 70 91 90 88
MCA-1 82 100

It is apparent from this data that the choice of a threshold value is important. Also the threshold
value giving the best result for the HDTPS and ML algorithms is dependent on the coverage. This
suggests that in practice it may be difficult to choose the best threshold value. The MCA-1 algo-
rithm outperformed the other two at all threshold values examined, suggesting this approach may be
preferable in the context of automatic data capture.
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