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1 Introduction

Perfect phylogeny is one of the fundamental models for studying evolution. We investigate the following
variant of the problem: The input is an n × m species-characters matrix. The characters are binary
and directed, i.e., a species can only gain characters. The difference from standard perfect phylogeny
is that for some species the state of some characters is unknown. The question is whether one can
complete the missing states in a way admitting a perfect phylogeny. We call this problem Incomplete
Directed Perfect phylogeny (IDP).

The problem arises in classical phylogenetic studies, when some states are missing or undetermined.
Swofford’s PAUP software package [4] provides an exponential solution to the problem by exhaustive
search. Quite recently, a novel kind of genomic data has given rise to the same problem: Nikaido
et al. [3] use inserted repetitive genomic elements, particularly SINEs, as a source of evolutionary
information. The specific insertion events are identifiable by the flanking sequences on both sides of
the insertion site. These insertions are assumed to be unique, irreversible events in evolution. However,
the site and its flanking sequences may be lost when a large region of the genome which includes them
is deleted. In that case we do not know whether an insertion had occurred in the missing site. One
can model such data by assigning each locus a character, whose state is ‘1’ if the SINE occurred in
that locus, ‘0’ if the locus is present but does not contain the SINE, and ‘?’ if the locus is missing.
An example of the problem input and solution is given in Figure 1.
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Figure 1: Left to right: An incomplete matrix A, a completion B of A, and a phylogenetic tree for A
and B. A character next to a node indicates that the state of the character is 1 on and below that
node.

A generalization of IDP for non-binary characters was solved in O(n2m) time in [1]. We give a more
elegant graph sandwich formulation of the problem, devise a faster, simple Õ(nm) time algorithm,
and analyze the generality of the solution it produces.
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2 Method and Results

Let S = {s1, . . . , sn} be a species set, and let C = {c1, . . . , cm} be a character set. The input to IDP
can be represented as an n × m species-characters matrix A, where aij ∈ {0, ?, 1}. Construct the
bipartite graph G(A) = (S, C,E) with E = {(si, cj) : aij = 1}. An induced path of length four in
G(A) is called a Σ subgraph if it starts (and therefore ends) at a vertex corresponding to a species. A
graph with no induced Σ subgraph is said to be Σ-free. In case the matrix A is complete (i.e., contains
no ?-s), the following key observation can be shown: If G(A) is connected and Σ-free, then it contains
a universal character, i.e., a character that is adjacent to all species.

The pairwise compatibility theorem (cf. [2]), restated in terms of graph theory, says that a binary
matrix B has a phylogenetic tree iff G(B) is Σ-free. Denoting Ex = {(i, j) : aij = x}, for x = 0, ?, 1,
this gives the following Σ-free sandwich problem, which is equivalent to IDP: Given a partition of
S × C into three subsets: E0 - the forbidden edges, E1 - the mandatory edges, and E? - the optional
edges, find a supergraph of (S,C,E1) which is Σ-free and contains no forbidden edge.

Define the x-set of a character c to be {s : asc = x}. Define a clade of a tree T to be the leaf set
of the subtree induced by some node of T . Our algorithm for IDP outputs a phylogenetic tree T for
A, represented as a list of its clades. It starts by discarding from G(A) all characters whose 0-set or
1-set are empty, and by initializing the output tree to have the clade S, and all singleton clades. It
then works iteratively as follows: In each step the algorithm examines some non-singleton connected
component K of G(A). It searches for semi-universal characters in K, i.e., characters whose 0-set does
not intersect K. If no such character is found, the algorithm halts, declaring that the instance has no
solution (by the key observation above). Otherwise, all semi-universal characters are removed from
G(A), and the species set of K is added as a clade of the output tree.

The algorithm can be naively implemented in O(hnm) time, where h ≤ min{m, n} denotes the
height of the reconstructed tree. Using a dynamic data structure for maintaining the connected
components of G(A), we achieve a time bound of O(nm + |E1| log2(n + m) + h(n + m)).

Our algorithm is guaranteed to find the most general phylogenetic tree if one exists, i.e., if the
clade set of any other phylogenetic tree includes all clades reported. We can extend our algorithm
to check whether the input instance has a most general solution. The following condition has to be
verified, for each tree node: if three sons of this node induce clades S′, S ′′ and S′′′, then S′ remains
connected, even when one removes from G(A) all characters whose 0-sets do not intersect S′ ∪ S′′.
The complexity of the extended algorithm is O(nm+ d|E1| log2(n+m) + h(n+m)), where d denotes
the maximum number of sons of a node in T .
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